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In this short note, we prove that entire harmonic functions with polynomial bounds are indeed
polynomials. More precisely, we give two proofs of the following result:

Theorem 1. Suppose u is a harmonic function on Rn, and s ∈ [0,∞). If there exists a constant
C, and a sequence of radii {r1, r2, . . . }, such that rj → +∞ as j →∞, and

(1) u(x) ≤ C|x|s whenever |x| = rj for some j = 1, 2, . . . ,

then u is a polynomial of degree ≤ s.

Compare with Lemma 5.5 in Chapter 5 of [2]. Two aspects of this theorem makes it a bit more
difficult than the usual: First, the inequality (1) is only a one-sided inequality (the left-hand side
is just u but not the absolute value of u); second, the inequality (1) is only assumed to hold on a
sequence of radii tending to infinity. Below we see how to circumvent these difficulties.

First proof of Theorem 1. The first proof is via kernel representations, similar to that of Lemma
5.5 in Chapter 5 of [2]. Let B(0, r) denote the closed ball centered at 0 of radius r. If v is continuous
on B(0, 1) and harmonic in the interior, then the Poisson integral formula says

v(x) =

ˆ
|y|=1

v(y)P1(x, y)dσ(y)

where P1 is the Poisson kernel of the unit ball, and dσ is the surface measure on the sphere {|y| = 1},
normalized so that

´
|y|=1 dσ(y) = 1.

We will not need the precise form of P here; all we need is that it is smooth, and that we
can differentiate the above formula as many times as we wish, to obtain, for each multiindex α, a
bounded kernel Kα(y) such that

(2) (∂αx v)(0) =

ˆ
|y|=1

v(y)Kα(y)dσ(y).

Indeed, we can take Kα(y) = ∂αxP1(x, y)|x=0. We write Aα for a constant for which |Kα(y)| ≤ Aα
for all |y| = 1.

Next, suppose u is as in our theorem. We apply the kernel representation (2) to v(x) := u(rjx),
for j = 1, 2, . . . , and any multiindex α with |α| > s. Then

r
|α|
j (∂αxu)(0) =

ˆ
|y|=1

u(rjy)Kα(y)dσ(y).

Similarly, by (2) applied to v(x) := Crsj instead, we get

0 =

ˆ
|y|=1

CrsjKα(y)dσ(y).
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Combining the two identities, we get

(∂αxu)(0) = r
−|α|
j

ˆ
|y|=1

(u(rjy)− Crsj )Kα(y)dσ(y).

Putting absolute values on both sides, we see that

|(∂αxu)(0)| ≤ r−|α|j

ˆ
|y|=1

|u(rjy)− Crsj ||Kα(y)|dσ(y)

≤ Aαr−|α|j

ˆ
|y|=1

Crsj − u(rjy)dσ(y),

the last line following since u(rjy) ≤ Crsj for all |y| = 1. But the mean-value property of harmonic
functions give ˆ

|y|=1
u(rjy)dσ(y) = u(0).

Hence the above gives

|(∂αxu)(0)| ≤ Aα(Cr
s−|α|
j − u(0)r

−|α|
j ).

Letting j →∞, we see that ∂αxu(0) = 0 for all multiindex α with |α| > s. Thus expanding u(x) in
power series centered at 0, we see that u(x) is a polynomial in x of degree ≤ s. �

The above proof relies on integral representation formula for harmonic functions. These may not
be available in more general settings (e.g. when one considers solutions to second order uniformly
elliptic partial differential equations with variable coefficients). We now give a second proof of
the theorem, that relies only on the maximum principle (and Harnack inequalities), and gradient
estimates, which are available in a more general context.

We first state the Harnack inequality for positive harmonic functions.

Theorem 2. (Harnack inequality) Suppose u is a positive harmonic function on B(x0, R) and
continuous up to boundary. Then for any x with |x− x0| = r < R, we have

1− r/R
[1 + (r/R)]n−1

u(x0) ≤ u(x) ≤ 1 + (r/R)

[1− r/R]n−1
u(x0).

Next comes a weak form of the gradient estimate for harmonic functions.

Theorem 3. (weak form of gradient estimate) Suppose u is a harmonic function on B(x0, R) and
continuous up to the boundary. Then there exists Cn > 0 such that for any k ∈ (0, 1),

sup
B(x0,kR)

|Du| ≤ Cn
(1− k)nR

sup
B(x0,R)

|u|.

By iteriating the above estimate, we can also derive the gradient estimate for higher order
derivatives.

Corollary 4. Suppose u is a harmonic function on B(x0, R) and continuous up to the boundary.
Then for any k ∈ N, there exists C(n, k) > 0 such that

sup
B(x0,R/2)

|Dku| ≤ C(n, k)

Rk
sup

B(x0,R)
|u|.
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Proof. As before, it suffices to consider the case x0 = 0, R = 1. Noted that for any multiindices
α = (i1, i2, ..., ik), ∂

αu is still harmonic. Hence, we may apply the previous gradient estimate to
∂αu.

sup
B(1/2)

|∂i1∂i2 ...∂iku| ≤ Cn sup
B(3/4)

|∂i2 ...∂iku|

≤ C ′n sup
B(7/8)

|∂i3 ...∂iku|

≤ C(n, k) · sup
B(1)
|u|.

�

Now we are ready to give another proof of Theorem 1.

Second proof of Theorem 1. Suppose u is as in Theorem 1. Then the maximum principle implies
that

(3) u(x) ≤ Crsj whenever |x| ≤ rj for some j = 1, 2, . . . .

Hence Crsj − u(x) is a non-negative harmonic function on B(0, rj). The Harnack inequality then
implies the existence of a constant c > 0, such that

Crsj − u(x) ≤ c(Crsj − u(0)) for all x ∈ B(0, rj/2), j = 1, 2, . . . ,

and hence we obtain an upper bound for −u as well: there exists a constant C ′, such that

(4) −u(x) ≤ C ′rsj for all x ∈ B(0, rj/2), j = 1, 2, . . . .

From (3) and (4), we see that there exists a constant C ′′, such that

|u(x)| ≤ C ′′rsj for all x ∈ B(0, rj/2), j = 1, 2, . . . .

The gradient estimate then implies the existence of a constant C ′′′, such that

|∂αxu(0)| ≤ C ′′′rs−|α|j for all multiindices α and all j = 1, 2, . . . .

In particular, letting j → ∞, we see that ∂αxu(0) = 0 for all multiindices α with |α| > s. We can
now finish the proof of the theorem as before. �

Finally we come back and discuss a proof of the Harnack inequality and the weak form of the
gradient estimate stated earlier. These can be proved using the maximum principle for harmonic
functions only, by constructing appropriate test functions. This is a more robust approach that
can be generalized to a wider context. However, the most straight-forward proof of the Harnack
inequality and the weak form of the gradient estimate for harmonic functions is via the Poisson
integral formula. Let us give the most straight-forward proof below, and refer to Chapter 3.4 of [1]
for the more robust proof mentioned above.

Proof of the Harnack inequality. By rescaling, it suffices to consider the case where R = 1. By
Poisson integral formula,

u(x) =
1

ωn−1

ˆ
∂B(x0,1)

1− r2

|x− y|n
u(y) dy
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where ωn−1 = |∂B(1)|. By using the following simple inequality, 1−r
(1+r)n−1 ≤ 1−r2

|x−y|n ≤
1+r

(1−r)n−1 , we

have

u(x) =

 
∂B(x0,1)

1− r2

|x− y|n
u(y) dy ≤

 
∂B(x0,1)

1 + r

(1− r)n−1
u(y)dy =

1 + r

(1− r)n−1
u(x0).

The other side is completely the same. �

Proof of the weak form of the gradient estimate. By rescaling and translating, we may assume R =
1 and x0 = 0. As before, we make use of the Poisson integral formula in which

u(x) =
1

ωn−1

ˆ
∂B(1)

1− |x|2

|x− y|n
u(y) dy.

Differentiating the Kernel P (x, y) = 1−|x|2
|x−y|n , we obtain the following.

∂

∂xi

(
1− |x|2

|x− y|n

)
=
−2xi
|x− y|n

− n(xi − yi)(1− |x|2)
|x− y|n+2

where x = (x1, x2, ..., xn), y = (y1, ..., yn). Hence, for |x| = r,

|∂xiP (x, y)| ≤ 2r

(1− r)n
+
n(1 + r)

(1− r)n
≤ Cn

(1− r)n
.

And thus,

|∂iu(x)| ≤ Cn
(1− r)n

sup
B(1)
|u|.

Taking maximum and run through all index together with maximum principle, we arrive at the
following conclusion.

sup
B(r)
|Du| ≤ Cn

(1− r)n
sup
B(1)
|u|.

�
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